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What is a beautiful conjecture?

The mathematician’s patterns, like the painter’s or the poet’s

must be beautiful; the ideas, like the colors or the words must fit

together in a harmonious way. Beauty is the first test: there is

no permanent place in this world for ugly mathematics.

G.H. Hardy



Some criteria:

. Simplicity: short, easily understandable statement relating

basic concepts.

. Element of Surprise: links together seemingly disparate

concepts.

. Generality: valid for a wide variety of objects.

. Centrality: close ties with a number of existing theorems

and/or conjectures.

. Longevity: at least twenty years old.

. Fecundity: attempts to prove the conjecture have led to new

concepts or new proof techniques.



(d, g)-cage: smallest d-regular graph of girth g



Lower bound on order of a (d, g)-cage:

girth g = 2r order
2(d−1)r−2

d−2

girth g = 2r + 1 order
d(d−1)r−2

d−2

Examples with equality:

. Petersen

. Heawood

. Coxeter-Tutte

. Hoffman-Singleton . . .



We shall consider only oriented graphs:

no loops, parallel arcs or directed 2-cycles



Directed (d, g)-cage:

smallest d-diregular digraph of directed girth g

Behzad-Chartrand-Wall Conjecture 1970

The digraph
−→
C

d

d(g−1)+1 is a directed (d, g)-cage

Directed (4, 4)-cage?
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COMPOSITIONS

Directed (5, 4)-cage?

More generally, if G and H are directed (d, g)-cages,
then so is their composition G[H ]



Reformulation:

Behzad-Chartrand-Wall Conjecture 1970

Every d-diregular digraph on n vertices has a
directed cycle of length at most dn/de



VERTEX-TRANSITIVE GRAPHS

Hamidoune:

In a d-diregular vertex-transitive digraph, there are d
directed cycles C1, . . . , Cd passing through a common
vertex, any two meeting only in that vertex:

d
∑

i=1

|V (Ci)| ≤ n + d − 1

So one of these cycles is of length at most
⌈n
d

⌉



DISJOINT DIRECTED CYCLES

Hoáng-Reed Conjecture 1987

In a d-diregular digraph, there are d directed
cycles C1, . . . , Cd such that Cj meets ∪j−1

i=1Ci in
at most one vertex, 1 < j ≤ d.

Forest of d Directed Cycles



Mader:

Forest of directed cycles not necessarily linear :

Cd[Cd−1]

No linear forest of four directed cycles
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PRESCRIBED MINIMUM OUTDEGREE

Caccetta-Häggkvist Conjecture 1978

Every digraph on n vertices with minimum
outdegree d has a directed cycle of length

at most dn/de

WHAT IS KNOWN?

Caccetta and Häggkvist: d = 2

Hamidoune: d = 3

Hoáng and Reed: d = 4, 5

Shen: d ≤
√

n/2



Chvátal and Szemerédi:

Every digraph on n vertices with minimum outdegree
d has a directed cycle of length at most 2n/d

Proof by Induction:

PSfrag replacements

v

d≥ d

N−(v) N+(v)
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PSfrag replacements
v

d≥ d

N−(v) N+(v)N−−(v)



Chvátal and Szemerédi:

Every digraph on n vertices with minimum outdegree
d has a directed cycle of length at most (n/d) + 2500

Shen:

Every digraph on n vertices with minimum outdegree
d has a directed cycle of length at most (n/d) + 73

WHAT DOES THIS SAY WHEN d = dn/3e?

Every digraph on n vertices with minimum outdegree
dn/3e has a directed cycle of length at most 76

BUT THE BOUND IN THE
CACCETTA-HÄGGKVIST CONJECTURE IS 3



Caccetta-Häggkvist Conjecture for

triangles

Every digraph on n vertices with minimum
outdegree dn/3e has a directed triangle

Caccetta and Häggkvist:

Every digraph on n vertices with minimum outdegree
dcne, where c = 1

2(3 −
√

5), has a directed triangle

PSfrag replacements

v

w

cn≥ cn
< (1 − 2c)n

N−(v) N+(v) N++(v)

Assume no directed triangle.
Apply induction to subgraph induced by N+(v):

cn ≤ d+(w) < c2n + (1 − 2c)n so c2 − 3c + 1 > 0



DEGREE BOUNDS FOR A TRIANGLE

minimum outdegree dcne:

Caccetta and Häggkvist: c = 1
2(3 −

√
5) ≈ 0.382

Shen: c = 3 −
√

7 ≈ 0.3542

minimum indegree and outdegree at least dcne:

de Graaf, Seymour and Schrijver: c ≈ .3487

Shen: c ≈ 0.3477



SECOND NEIGHBOURHOODS

Seymour’s Second Neighbourhood
Conjecture 1990

Every digraph (without directed 2-cycles) has a
vertex with at least as many second neighbours

as first neighbours

PSfrag replacements

v

N+(v) N++(v)



The Second Neighbourhood Conjecture implies the
triangle case

d =
⌈n

3

⌉

of the Behzad-Chartrand-Wall Conjecture

PSfrag replacements v

d d
≥ d

N−(v) N+(v) N++(v)

If there is no directed triangle:

n ≥ 3d + 1



Fisher: Second Neighbourhood Conjecture true for
tournaments

Proof by Havet and Thomassé

Median order: linear order v1, v2, . . . , vn maximizing
|{(vi, vj) : i < j}| (number of arcs from left to right)

Property: for any i ≤ j, vertex vj is dominated by at
least half of the vertices vi, vi+1, . . . , vj−1

PSfrag replacements

v1 vi vj vn

If not, move vj before vi

Claim: |N++(vn)| ≥ |N+(vn)|



PSfrag replacements

vn

vn

vn



PSfrag replacements

vi vj vn



COUNTING SUBGRAPHS

NOTATION

D digraph

d−(v) indegree of v, d outdegree of v, v ∈ V

Seven possible types of induced 3-vertex subgraphs:

PSfrag replacements 1 2 3

4 5 6 7



PSfrag replacements 1 2 3

4 5 6 7

xi number of induced subgraphs of type i in D

x1 + x2 + x3 + x4 + x5 + x6 + x7 =

(

n

3

)

x2 + 2x3 + 2x4 + 2x5 + 3x6 + 3x7 = n(n − 2)d

x3 + x6 =
∑

v∈V

(

d−(v)

2

)

x4 + x6 + 3x7 = nd2

x5 + x6 = n

(

d

2

)

Assume no directed triangle: x7 = 0

Solve in terms of x6



x1 =

(

n

3

)

− n(n − 2)d + n

(

d

2

)

+ nd2 +
∑

v∈V

(

d(v)

2

)

− x6

x2 = n(n − 2)d − 2n

(

d

2

)

− 2nd2 − 2
∑

v∈V

(

d(v)

2

)

+ 3x6

x3 = n

(

d

2

)

− x6

x4 = nd2 − x6

x5 =
∑

v∈V

(

d(v)

2

)

− x6

x2 + 3x3 = n(n − 2)d + n

(

d

2

)

− 2nd2 − 2
∑

v∈V

(

d(v)

2

)

≤ n(n − 2)d − 2nd2 − n

(

d

2

)

=
nd(2n − 3 − 5d)

2

But x2 ≥ 0 and x3 ≥ 0, so

d ≤ 2n − 3

5



INDUCED 2-PATHS

Thomassé’s Conjecture 2006

A digraph on n vertices has at most
n3

15
+ 0(n2)

induced directed 2-paths

(No condition on degrees or triangles)

In our notation:

x4 ≤
n3

15
+ 0(n2)

Similar approach to above gives:

x4 ≤ 2

5
x2 +

1

10
x3 + x4 +

1

10
x5 +

9

5
x7 ≤ 2

25
n3

Equality:

x1 =
1

150
n3, x2 = 0, x3 = 0, x4 =

2

25
n3

x5 = 0, x6 =
2

25
n3, x7 = 0



Roland Häggkvist



Paul Seymour



Vašek Chvátal



Endre Szemerédi



Stephan Thomassé
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