THE CACCETTA-HÄGGKVIST CONJECTURE

Adrian Bondy

What is a *beautiful* conjecture?

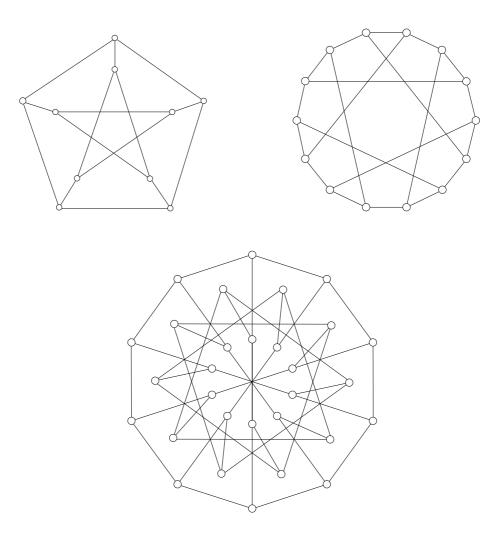
The mathematician's patterns, like the painter's or the poet's must be beautiful; the ideas, like the colors or the words must fit together in a harmonious way. Beauty is the first test: there is no permanent place in this world for ugly mathematics.

G.H. Hardy

Some criteria:

- ▷ *Simplicity*: short, easily understandable statement relating basic concepts.
- ▷ Element of Surprise: links together seemingly disparate concepts.
- \triangleright *Generality*: valid for a wide variety of objects.
- ▷ *Centrality*: close ties with a number of existing theorems and/or conjectures.
- \triangleright *Longevity*: at least twenty years old.
- ▷ Fecundity: attempts to prove the conjecture have led to new concepts or new proof techniques.

(d, g)-cage: smallest d-regular graph of girth g



Lower bound on order of a (d, g)-cage:

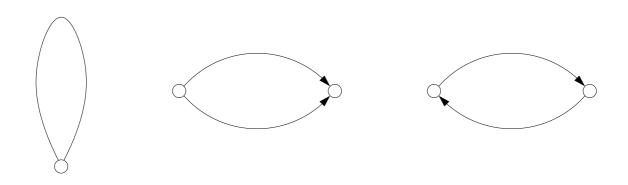
girth g = 2r order $\frac{2(d-1)^r - 2}{d-2}$ girth g = 2r + 1 order $\frac{d(d-1)^r - 2}{d-2}$

Examples with equality:

▷ Petersen
▷ Heawood
▷ Coxeter-Tutte

 \triangleright Hoffman-Singleton . . .

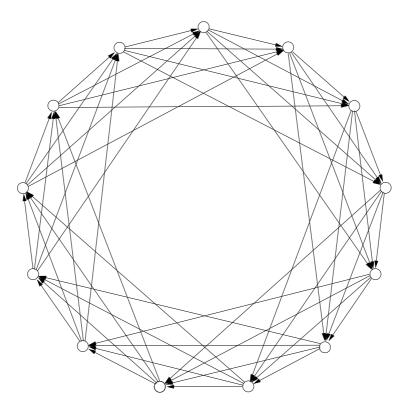
We shall consider only oriented graphs: no loops, parallel arcs or directed 2-cycles



smallest d-diregular digraph of directed girth g

Behzad-Chartrand-Wall Conjecture 1970

The digraph $\overrightarrow{C}_{d(g-1)+1}^d$ is a directed (d,g)-cage

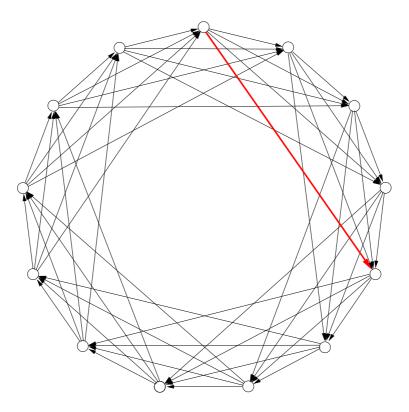


Directed (4, 4)-cage?

smallest d-diregular digraph of directed girth g

Behzad-Chartrand-Wall Conjecture 1970

The digraph $\overrightarrow{C}_{d(g-1)+1}^d$ is a directed (d,g)-cage

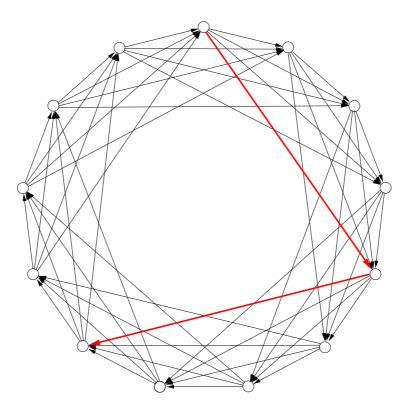


Directed (4, 4)-cage?

smallest d-diregular digraph of directed girth g

Behzad-Chartrand-Wall Conjecture 1970

The digraph $\overrightarrow{C}_{d(g-1)+1}^d$ is a directed (d,g)-cage

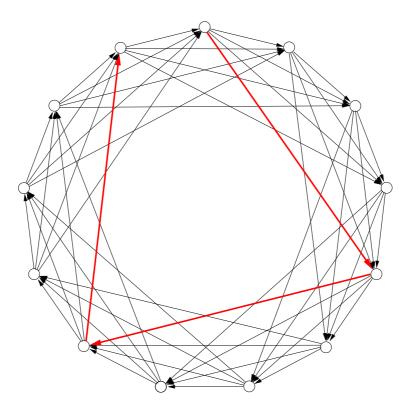


Directed (4, 4)-cage?

smallest d-diregular digraph of directed girth g

Behzad-Chartrand-Wall Conjecture 1970

The digraph $\overrightarrow{C}_{d(g-1)+1}^d$ is a directed (d,g)-cage

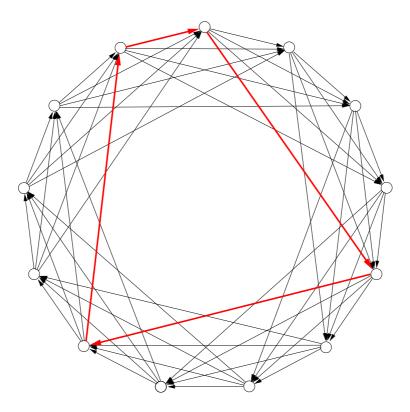


Directed (4, 4)-cage?

smallest d-diregular digraph of directed girth g

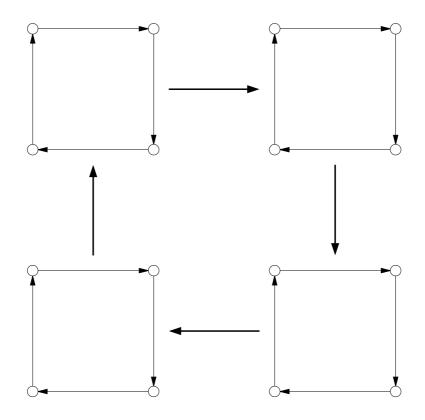
Behzad-Chartrand-Wall Conjecture 1970

The digraph $\overrightarrow{C}_{d(g-1)+1}^d$ is a directed (d,g)-cage



Directed (4, 4)-cage?

COMPOSITIONS



Directed (5, 4)-cage?

More generally, if G and H are directed (d, g)-cages, then so is their composition G[H]

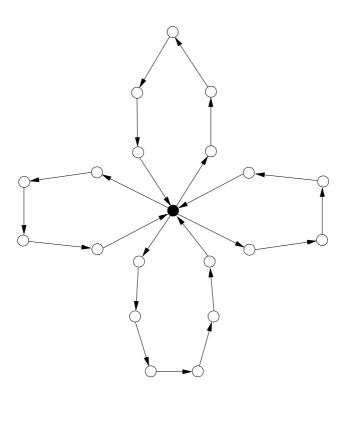
Behzad-Chartrand-Wall Conjecture 1970

Every d-diregular digraph on n vertices has a directed cycle of length at most $\lceil n/d \rceil$

VERTEX-TRANSITIVE GRAPHS

HAMIDOUNE:

In a d-diregular vertex-transitive digraph, there are d directed cycles C_1, \ldots, C_d passing through a common vertex, any two meeting only in that vertex:



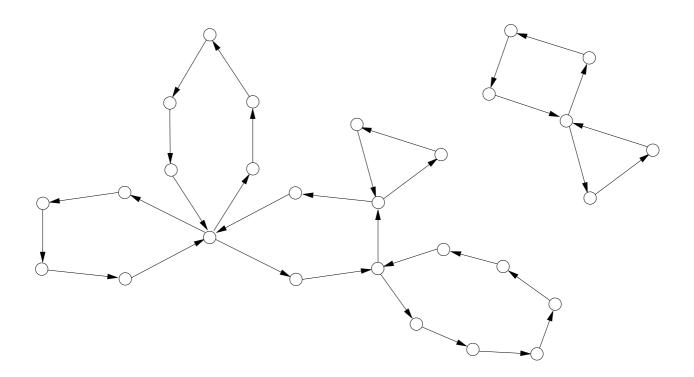
$$\sum_{i=1}^{d} |V(C_i)| \le n+d-1$$

So one of these cycles is of length at most $\left\lceil \frac{n}{d} \right\rceil$

DISJOINT DIRECTED CYCLES

Hoáng-Reed Conjecture 1987

In a d-diregular digraph, there are d directed cycles C_1, \ldots, C_d such that C_j meets $\bigcup_{i=1}^{j-1} C_i$ in at most one vertex, $1 < j \leq d$.

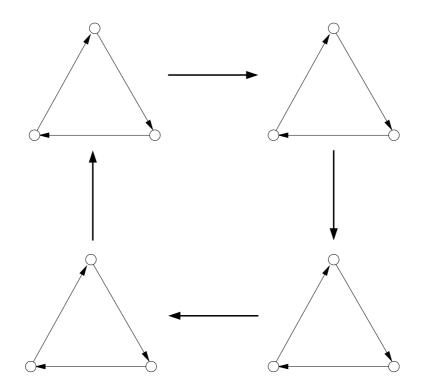


Forest of d Directed Cycles

MADER:

Forest of directed cycles not necessarily linear:

 $C_d[C_{d-1}]$

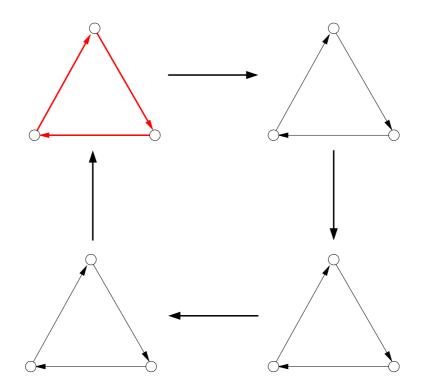


NO LINEAR FOREST OF FOUR DIRECTED CYCLES

MADER:

Forest of directed cycles not necessarily linear:

 $C_d[C_{d-1}]$

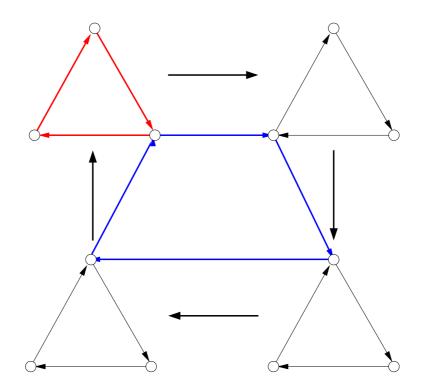


NO LINEAR FOREST OF FOUR DIRECTED CYCLES

MADER:

Forest of directed cycles not necessarily linear:

 $C_d[C_{d-1}]$



NO LINEAR FOREST OF FOUR DIRECTED CYCLES

Caccetta-Häggkvist Conjecture 1978

Every digraph on n vertices with minimum outdegree d has a directed cycle of length at most $\lceil n/d \rceil$

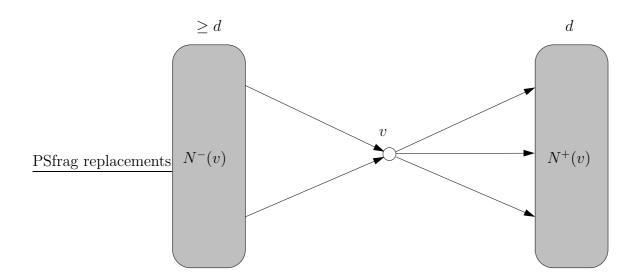
WHAT IS KNOWN?

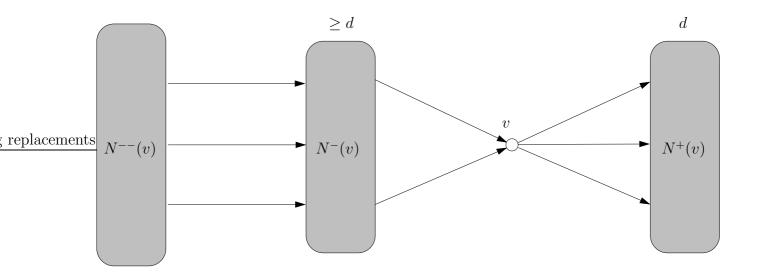
Caccetta and Häggkvist: d = 2Hamidoune: d = 3Hoáng and Reed: d = 4, 5Shen: $d \le \sqrt{n/2}$

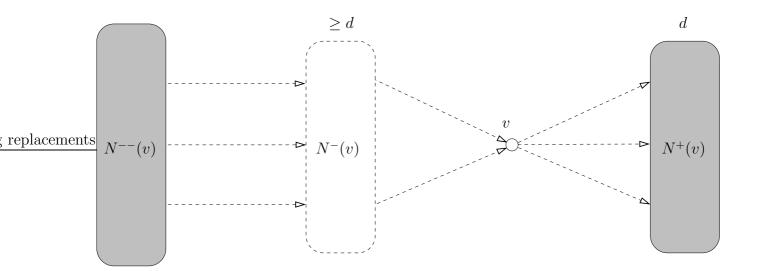
Chvátal and Szemerédi:

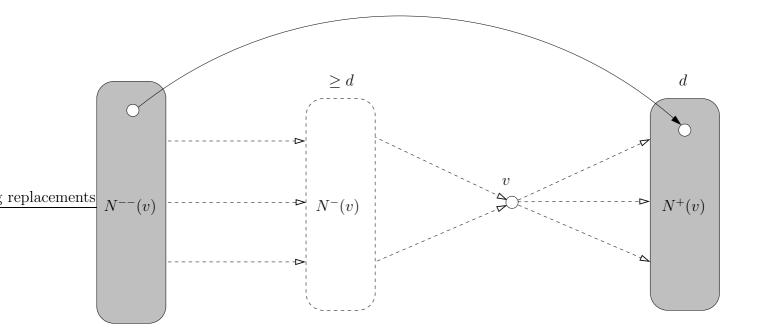
Every digraph on n vertices with minimum outdegree d has a directed cycle of length at most 2n/d

PROOF BY INDUCTION:

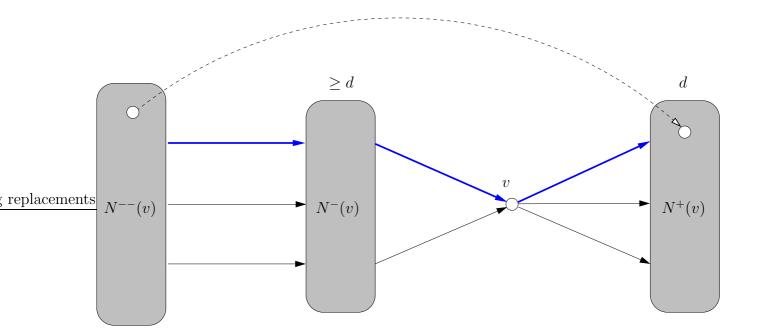












CHVÁTAL AND SZEMERÉDI:

Every digraph on n vertices with minimum outdegree d has a directed cycle of length at most (n/d) + 2500

SHEN:

Every digraph on n vertices with minimum outdegree d has a directed cycle of length at most (n/d) + 73

WHAT DOES THIS SAY WHEN $d = \lceil n/3 \rceil$?

Every digraph on n vertices with minimum outdegree $\lceil n/3 \rceil$ has a directed cycle of length at most 76

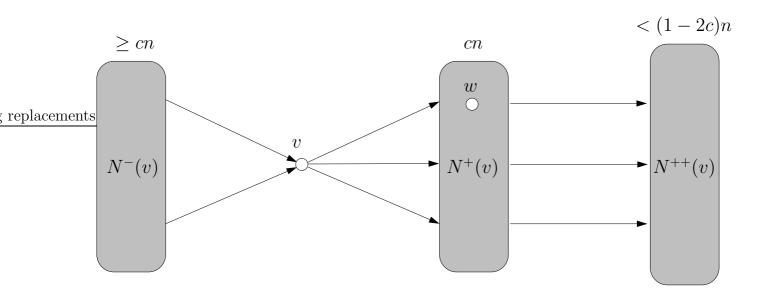
BUT THE BOUND IN THE CACCETTA-HÄGGKVIST CONJECTURE IS **3**

Caccetta-Häggkvist Conjecture for triangles

Every digraph on n vertices with minimum outdegree $\lceil n/3 \rceil$ has a directed triangle

Caccetta and Häggkvist:

Every digraph on n vertices with minimum outdegree [cn], where $c = \frac{1}{2}(3 - \sqrt{5})$, has a directed triangle



Assume no directed triangle. Apply induction to subgraph induced by $N^+(v)$:

$$cn \le d^+(w) < c^2n + (1-2c)n$$
 so $c^2 - 3c + 1 > 0$

DEGREE BOUNDS FOR A TRIANGLE

minimum outdegree $\lceil cn \rceil$:

Caccetta and Häggkvist: $c = \frac{1}{2}(3 - \sqrt{5}) \approx 0.382$ Shen: $c = 3 - \sqrt{7} \approx 0.3542$

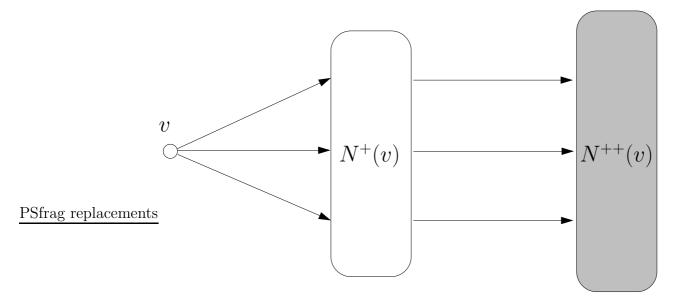
minimum indegree and outdegree at least $\lceil cn \rceil$:

de Graaf, Seymour and Schrijver: $c \approx .3487$ Shen: $c \approx 0.3477$

SECOND NEIGHBOURHOODS

Seymour's Second Neighbourhood Conjecture 1990

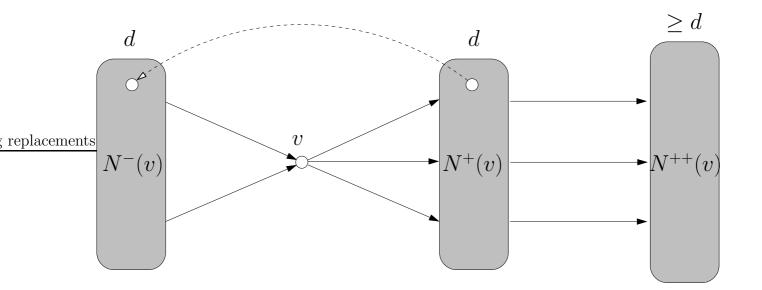
Every digraph (without directed 2-cycles) has a vertex with at least as many second neighbours as first neighbours



The Second Neighbourhood Conjecture implies the triangle case

$$d = \left|\frac{n}{3}\right|$$

of the Behzad-Chartrand-Wall Conjecture



If there is no directed triangle:

 $n \geq 3d+1$

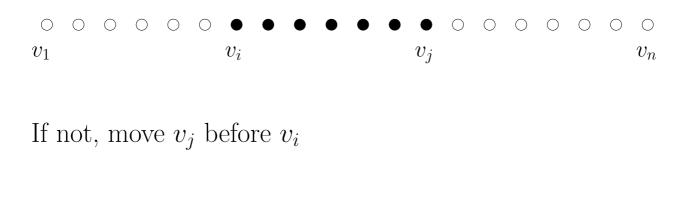
Fisher: Second Neighbourhood Conjecture true for tournaments

<u>Proof</u> by Havet and Thomassé

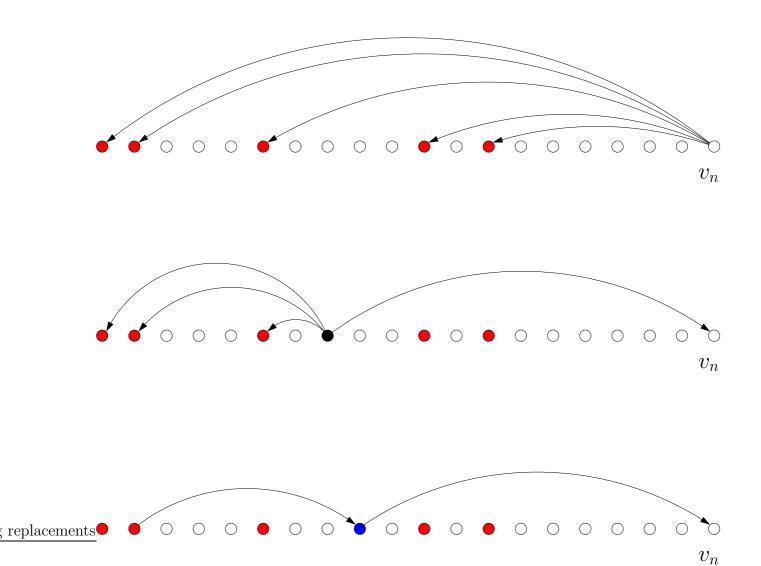
Median order: linear order v_1, v_2, \ldots, v_n maximizing $|\{(v_i, v_j) : i < j\}|$ (number of arcs from left to right)

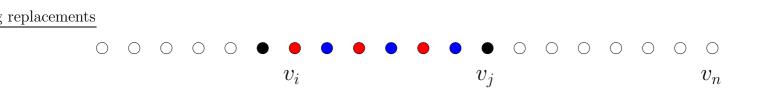
Property: for any $i \leq j$, vertex v_j is dominated by at least half of the vertices $v_i, v_{i+1}, \ldots, v_{j-1}$

replacements



<u>Claim</u>: $|N^{++}(v_n)| \ge |N^+(v_n)|$



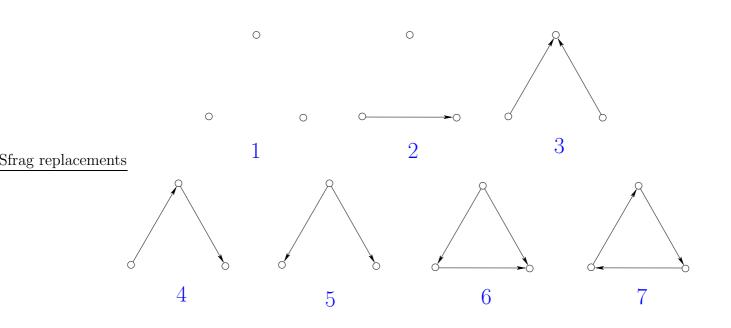


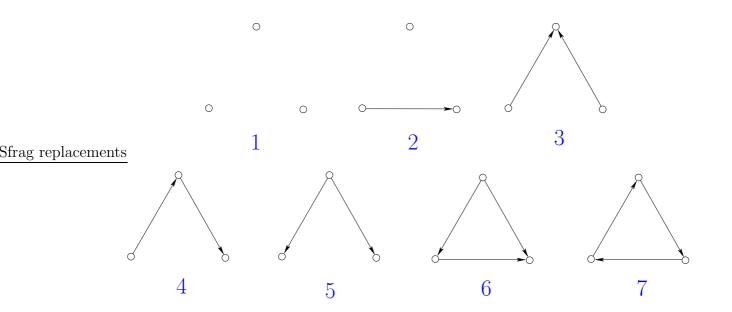
COUNTING SUBGRAPHS

NOTATION

- **D** digraph
- $d^{-}(v)$ indegree of v, d outdegree of v, $v \in V$

Seven possible types of induced 3-vertex subgraphs:





 x_i number of *induced* subgraphs of type *i* in *D*

Assume no directed triangle: $x_7 = 0$ Solve in terms of x_6

$$x_{1} = \binom{n}{3} - n(n-2)d + n\binom{d}{2} + nd^{2} + \sum_{v \in V} \binom{d(v)}{2} - x_{6}$$

$$x_{2} = n(n-2)d - 2n\binom{d}{2} - 2nd^{2} - 2\sum_{v \in V} \binom{d(v)}{2} + 3x_{6}$$

$$x_{3} = n\binom{d}{2} - x_{6}$$

$$x_{4} = nd^{2} - x_{6}$$

$$x_{5} = \sum_{v \in V} \binom{d(v)}{2} - x_{6}$$

$$x_{2} + 3x_{3} = n(n-2)d + n\binom{d}{2} - 2nd^{2} - 2\sum_{v \in V} \binom{d(v)}{2}$$
$$\leq n(n-2)d - 2nd^{2} - n\binom{d}{2}$$
$$= \frac{nd(2n-3-5d)}{2}$$

But $x_2 \ge 0$ and $x_3 \ge 0$, so

$$d \le \frac{2n-3}{5}$$

Thomassé's Conjecture 2006

A digraph on n vertices has at most $\frac{n^3}{15} + 0(n^2)$ induced directed 2-paths

(No condition on degrees or triangles)

In our notation:

$$x_4 \le \frac{n^3}{15} + 0(n^2)$$

Similar approach to above gives:

$$x_4 \leq \frac{2}{5}x_2 + \frac{1}{10}x_3 + x_4 + \frac{1}{10}x_5 + \frac{9}{5}x_7 \leq \frac{2}{25}n^3$$

Equality:

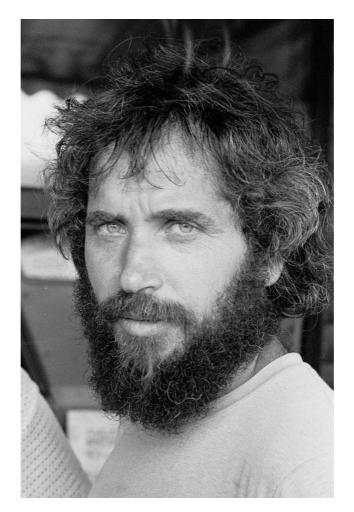
$$x_1 = \frac{1}{150}n^3, \ x_2 = 0, \ x_3 = 0, \ x_4 = \frac{2}{25}n^3$$

 $x_5 = 0, \ x_6 = \frac{2}{25}n^3, \ x_7 = 0$

Roland Häggkvist

PAUL SEYMOUR

VAŠEK CHVÁTAL



Endre Szemerédi

Stephan Thomassé

References

M. Behzad, G. Chartrand and C.E. Wall, On minimal regular digraphs with given girth, *Fund. Math.* **69** (1970), 227–231.

L. Caccetta and R. Häggkvist, On minimal digraphs with given girth, *Congressus Numerantium* **21** (1978), 181–187.

D.C. Fisher, Squaring a tournament: a proof of Dean's conjecture. J. Graph Theory 23 (1996), 43–48.

F. Havet and S. Thomassé. Median orders of tournaments: a tool for the second neighborhood problem and Sumner's conjecture. *J. Graph Theory* **35** (2000), 244–256.

P.D. Seymour, personal communication, 1990.

B. Sullivan, A summary of results and problems related to the Caccetta-Häggkvist Conjecture.